3.6.4 ปฏิกิริยานิวเคลียร์

3.6 ธาตุกัมมันตรังสี

3.6.4 ปฏิกิริยานิวเคลียร์

ปฏิกิริยานิวเคลียร์  คือ  ปฏิกิริยาที่เกิดความเปลี่ยนแปลงกับนิวเคลียสของอะตอม ไม่ว่าจะเป็นการเพิ่ม หรือลดโปรตอน หรือนิวตรอนในนิวเคลียสของอะตอม เช่น ปฏิกิริยานี้

{}^{23}_{11} Na + {}^1_0 n \rarr {}^{24}_{11} Na + \gamma

จะเห็นได้ว่าโซเดียม ได้มีการรับนิวตรอนเข้าไป เมื่อนิวเคลียสเกิดความไม่เสถียร จึงเกิดการคายพลังงานออกมา และพลังงานที่คายออกมานั้น เมื่ออยู่ในรูปคลื่นแม่เหล็กไฟฟ้าแล้ว มันก็คือรังสีแกมมานั่นเอง
โดยทั่วไปรังสีแกมมาที่แผ่ออกมาจากนิวเคลียสของอะตอมที่ไม่เสถียรนั้น มักจะมีค่าพลังงานที่แตกต่างกันไปตามแต่ละชนิดของไอโซโทป ซึ่งถือเป็นคุณลักษณะประจำไอโซโทปนั้น ๆ

ปฏิกิริยานิวเคลียร์นั้นมีมากมายหลายรูปแบบ ซึ่งในบรรดารูปแบบทั้งหมดที่เราค้นพบในปัจจุบัน จะมีเพียง รูปแบบที่เราพูดถึงกันบ่อย ๆ นั่นก็คือปฏิกิริยานิวเคลียร์ฟิชชัน (Fission) และปฏิกิริยานิวเคลียร์ฟิวชัน (Fusion)

ปฏิกิริยานิวเคลียร์ฟิชชัน
 
โมเดลแสดงการเกิดปฏิกิริยานิวเคลียร์ฟิชชัน

ปฏิกิริยานิวเคลียร์ฟิชชัน (Fission Process) เป็นการแตกนิวเคลียสของอะตอมจากอะตอมของธาตุใหญ่ให้กลายเป็นอะตอมของธาตุเล็ก อะตอม ซึ่งในกระบวนการนี้จะให้พลังงานออกมาด้วย เช่น

{}^{325}_{\ 92} U + {}^1_0 n \rarr {}^{138}_{\ 56} Ba + {}^{95}_{36} Kr + 3\;^1_0 n

ซึ่งในปฏิกิริยาที่ยกตัวอย่างนี้ ไอโซโทปของแบเรียม (Ba) และคริปตอน (Kr) ซึ่งไอโซโทปทั้งสองตัวนี้มีนิวตรอนมากกว่าปกติ จึงมีการคายพลังงานออกมาในรูปของรังสีเบตา อย่างไรก็ตาม ถึงแม้ว่าในตัวอย่างนี้สารผลิตภัณฑ์ที่ได้จากปฏิกิริยาจะเป็นกากกัมมันตรังสีที่แผ่รังสีเบตา (Beta Ray) แต่ก็ยังมีปฏิกิริยาอื่น ๆ ที่แผ่รังสีชนิดอื่น ๆ รวมไปถึงรังสีแกมมา ตัวอย่างนี้เป็นเพียงการทำให้เห็นภาพว่าผลิตภัณฑ์ที่ได้จากปฏิกิริยา นิวเคลียร์ฟิชชันจะคายพลังงานออกมา นั่นก็เป็นเพราะโดยทั่วไปเมื่อธาตุที่มีมวลหรือเป็นธาตุหนักขึ้น จำนวนของนิวตรอนก็เริ่มที่จะมากกว่าโปรตอนไปด้วยตามลำดับ ซึ่งเมื่ออะตอมเหล่านี้แตกตัวมาเป็นอะตอมของธาตุที่เล็กกว่า ก็ย่อมทำให้จำนวนนิวตรอนของอะตอมมากกว่าปกติ 

ปฏิกิริยานิวเคลียร์ฟิวชัน
 

โมเดลแสดงการเกิดปฏิกิริยานิวเคลียร์ฟิวชัน

สำหรับปฏิกิริยานิวเคลียร์ฟิวชัน (Fusion Process) จะตรงข้ามกับฟิชชัน นั่นคือแทนที่จะแตกอะตอมของธาตุหนักให้เป็นธาตุเบา ก็จะกลายเป็นการรวมธาตุเบาสองอะตอมให้กลายเป็นอะตอมเดียวที่หนักขึ้น เช่นตัวอย่างนี้

{}^2_1 H + {}^2_1 H \rarr {}^3_2 He + {}^1_0 n

จะเห็นได้ว่า ผลิตภัณฑ์ของปฏิกิริยานี้ เราจะได้ฮีเลียม (He) ที่มีจำนวนนิวตรอนน้อยกว่าปกติ (ปกติฮีเลียมจะมีนิวตรอน 2 ตัว) ซึ่งสภาพที่ไม่เสถียรของอะตอมนี้เอง จึงทำให้เกิดการคายพลังงานออกมาได้  ดวงอาทิตย์นั้นประกอบไปด้วยกลุ่มแก๊สไฮโดรเจนเป็น ส่วนใหญ่ เนื่องจากมีมวลจำนวนมากจึงทำให้แรงโน้มถ่วงมหาศาลดูดแก๊สเข้าหากัน มากพอที่จะทำให้เกิดปฏิกิริยานิวเคลียร์ฟิวชั่น ซึ่งเป็นแหล่งพลังงานหลักของดวงอาทิตย์

ไม่มีความคิดเห็น:

แสดงความคิดเห็น

บทที่ 3 สมบัติของธาตุและสารประกอบ จากการศึกษาการจัดเรียงธาตุตามตารางธาตุ พบว่ามีการจัดเรียงตามเลขอะตอม (atomic number) หรือจำนวน โป...